Complex Spacetime Unification Framework

A Geometric Theory Unifying Quantum Mechanics, Relativity, and Thermodynamics

III. Time Dilation (Unified)

Optical Refraction Model

Time dilation emerges from refraction of "time ticks" through curved interface:

\( \frac{d\tau}{dt} = \sqrt{1 - \frac{v^2}{c^2} - \frac{2\hbar\omega}{c^3 r}} \)
(Combined Time Dilation)

This unifies:

  • Kinetic term: \( \frac{v^2}{c^2} \) (Special Relativity)
  • Gravitational term: \( \frac{2\hbar\omega}{c^3 r} = \frac{2Gm}{r c^2} \) (General Relativity)

Mass-Dependent Prediction

Unlike standard GR, proper time depends on particle's own mass:

\( \frac{d\tau_e}{dt} = \sqrt{1 - \frac{v^2}{c^2} - \frac{2Gm_e}{r c^2}} \)
(Electron)
\( \frac{d\tau_p}{dt} = \sqrt{1 - \frac{v^2}{c^2} - \frac{2Gm_p}{r c^2}} \)
(Proton)

Testable prediction: Proton experiences ×1836 stronger self-gravitational dilation!

Relativistic Mass Enhancement

\( m_{\text{eff}}(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = m_0 \, \gamma(v) \)
(Moving Particle Well Depth)

Well deepens with velocity → additional gravitational dilation

IV. Quantum Mechanics

Wave-Particle Duality

Not mysterious — location in complex plane:

  • Time domain (\( ds^2 = (c\,dt)^2 \)): Pure wave, \( \omega \) oscillations
  • Space domain (\( ds^2 \) includes \( (i\,v\,dt)^2 \)): Particle, localized
  • Interface: Superposition of both

De Broglie Relations

\( \lambda = \frac{h}{m v} = \frac{2\pi\hbar}{m v} \)
(Wavelength)
\( \omega = \frac{m c^2}{\hbar} \)
(Frequency)

Atomic Structure

Electrons in orbitals sit at different depths in nuclear well:

\( m_{\text{eff}}(n) = m_e + \Delta m_{\text{grav}}(r_n) \)
(Effective Mass in Orbital)
\( \Delta m_{\text{grav}}(r_n) \approx -m_e \frac{G m_{\text{nucleus}}}{r_n c^2} \)
(Gravitational Correction)

Spectral lines encode ℏ-coupling changes, not just energy!

Quantum Tunneling

Deep in wells, particles become wave-like in time domain:

  • Barrier opaque in space → transparent in time
  • Wave propagates through time domain
  • Recoheres on other side (resonance cavity effect)
\( P \sim e^{-2 \int \sqrt{\frac{2m(V-E)}{\hbar^2}} \, dr} \rightarrow \text{Phase integral in time domain} \)
(Tunneling Probability)
V. Particle Statistics

Bosons vs Fermions

Bosons (Time-Domain Natives)

\( ds^2 = (c\,dt)^2, \; v = 0, \; m \approx 0 \)
  • No ℏ-coupling wells (or very weak)
  • Integer spin: \( s = 0, 1, 2, \ldots \)
  • No Pauli exclusion (share time-domain states)
  • Examples: photons, gluons, W/Z

Fermions (Space-Domain Trapped)

\( ds^2 = (c\,dt)^2 + (i\,v\,dt)^2, \; m > 0 \)
  • Have ℏ-coupling wells
  • Half-integer spin: \( s = \frac{1}{2}, \frac{3}{2}, \ldots \)
  • Pauli exclusion (can't share spatial states)
  • Examples: electrons, quarks, neutrinos

Bose-Einstein Condensation

At \( T \to 0 \), fermions recohere into time domain:

\( k_B T_c \sim \hbar \omega_0 \sim m c^2 \)
(Critical Temperature)
\( v \to 0, \; ds^2 \to (c\,dt)^2 \)
(Below \( T_c \))

Spin as Interface Geometry

\( \hat{S} = \hbar \frac{\partial}{\partial \phi} \)
(Spin Operator)
  • Integer spin: Full symmetry, \( 2\pi \to \) same state
  • Half-integer: Twisted coupling, \( 4\pi \to \) same state
VI. Cosmology

Hubble Expansion

\( H_0 \sim (\text{decoherence rate}) \cdot (\text{interface curvature}) \)
(Hubble Parameter)

Dark Energy

\( \rho_\Lambda = \rho_{\text{time}} \, P(\text{decohere}) \sim 10^{-120} \, \rho_{\text{Planck}} \)
(Vacuum Energy Density)

Hawking Radiation

\( k_B T_H = \frac{\hbar c^3}{8\pi G M} \)
(Temperature)
VII. Experimental Predictions

1. Mass-Dependent Time Dilation

\( \Delta \tau_p - \Delta \tau_e \sim \frac{(m_p - m_e) G v^2 t}{r c^2} \)

2. Atomic Spectral Corrections

\( h\nu = \Delta E + c^2 \Delta m_{\text{coupling}} \)

3. Temperature-Dependent EM Constants

\( \varepsilon_0(T), \, \mu_0(T), \, c(T) = \frac{1}{\sqrt{\varepsilon_0(T)\mu_0(T)}} \)

4. BEC Phase Transition

\( k_B T_c = \frac{\hbar^2}{2m} \left( \frac{n}{\zeta(3/2)} \right)^{2/3} \)
IX. Compatibility with Established Theories

A. Schrödinger Equation

\( i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi \)
\( \psi = \psi_{\text{time}} + i\,\psi_{\text{space}} \)

B. Dirac Equation

\( (i\gamma^\mu \partial_\mu - m)\psi = 0 \)
\( \eta^{\mu\nu} = \text{diag}(-1, +1, +1, +1) \)
\( ds^2 = (c\,dt)^2 + (i\,dx)^2 + (i\,dy)^2 + (i\,dz)^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 \)

C. Klein-Gordon Equation

\( \left( \frac{\partial^2}{\partial t^2} - c^2\nabla^2 + \frac{m^2 c^4}{\hbar^2} \right)\psi = 0 \)

D. Quantum Field Theory (QFT)

\( \hat{\phi}(x,t) = \int [a(k)e^{i(kx-\omega t)} + a^\dagger(k)e^{-i(kx-\omega t)}]\,d^3k \)
\( E_{\text{vacuum}} = \sum \frac{\hbar\omega_k}{2} \)
(Vacuum Energy)